Toric Sasaki–Einstein metrics with conical singularities
نویسندگان
چکیده
Abstract We show that any toric Kähler cone with smooth compact cross-section admits a family of Calabi–Yau metrics conical singularities along its divisors. The is parametrized by the Reeb and angles are given explicitly in terms vector field. result optimal, sense metric divisor (and elsewhere) belongs to this family. also provide examples interpret our results Sasaki–Einstein metrics.
منابع مشابه
Hyperbolic 2 - Spheres with Conical Singularities , Accessory Parameters and Kähler Metrics on M
We show that the real-valued function Sα on the moduli space M0,n of pointed rational curves, defined as the critical value of the Liouville action functional on a hyperbolic 2-sphere with n ≥ 3 conical singularities of arbitrary orders α = {α1, . . . , αn}, generates accessory parameters of the associated Fuchsian differential equation as their common antiderivative. We introduce a family of K...
متن کاملNumerical Solutions of Kähler–Einstein Metrics on P2 with Conical Singularities along a Smooth Quadric Curve
We solve for the SO(3)-invariant Kähler–Einstein metric on P2 with cone singularities along a smooth quadric curve using a numerical approach. The numerical results show the sharp range of angles ((π/2, 2π ]) for the solvability of equations, and the correct limit metric space (P(1, 1, 4)). These results exactly match our theoretical conclusion. We also point out the cause of incomplete classif...
متن کاملHarmonic maps on spaces with conical singularities
© Bulletin de la S. M. F., 1992, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملToric singularities revisited
In [Kat94b], Kato defined his notion of a log regular scheme and studied the local behavior of such schemes. A toric variety equipped with its canonical logarithmic structure is log regular. And, these schemes allow one to generalize toric geometry to a theory that does not require a base field. This paper will extend this theory by removing normality requirements.
متن کاملToric Fano 3-folds with Terminal Singularities
This paper classifies all toric Fano 3-folds with terminal singularities. This is achieved by solving the equivalent combinatoric problem; that of finding, up to the action of GL(3, Z), all convex polytopes in Z which contain the origin as the only non-vertex lattice point. 0. Background and Introduction A toric variety of dimension n over an algebraically closed field k is a normal variety X t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica-new Series
سال: 2022
ISSN: ['1022-1824', '1420-9020']
DOI: https://doi.org/10.1007/s00029-022-00778-y